Controlled-NOT logic gate for phase qubits based on conditional spectroscopy
نویسندگان
چکیده
A controlled-NOT logic gate based on conditional spectroscopy has been demonstrated recently for a pair of superconducting flux qubits [Plantenberg et al. in Nature 447:836, 2007]. Here we study the fidelity of this type of gate applied to a phase qubit coupled to a resonator (or a pair of capacitively coupled phase qubits). Our results show that an intrinsic fidelity of more than 99% is achievable in 45ns.
منابع مشابه
Controlled-NOT logic with nonresonant Josephson phase qubits
We establish theoretical bounds on qubit detuning for some of the previously proposed controlled-NOT !CNOT" logic gate implementations with weakly coupled Josephson phase qubits. It is found that in the twostep, #iSWAP-based case the value of the detuning during the entangling operations must not exceed 2g, where g is the characteristic coupling constant. In the single-step case we consider two...
متن کاملConditional rotation of two strongly coupled semiconductor charge qubits
Universal multiple-qubit gates can be implemented by a set of universal single-qubit gates and any one kind of entangling two-qubit gate, such as a controlled-NOT gate. For semiconductor quantum dot qubits, two-qubit gate operations have so far only been demonstrated in individual electron spin-based quantum dot systems. Here we demonstrate the conditional rotation of two capacitively coupled c...
متن کاملExperimental demonstration of a controlled-NOT wave-packet gate.
We report the experimental demonstration of a controlled-NOT (CNOT) quantum logic gate between motional and internal-state qubits of a single ion where, as opposed to previously demonstrated gates, the conditional dynamics depends on the extent of the ion's wave packet. Advantages of this CNOT gate over one demonstrated previously are its immunity from Stark shifts due to off-resonant couplings...
متن کاملControlled-NOT gate design for Josephson phase qubits with tunable inductive coupling: Weyl chamber steering and area theorem
Superconducting qubits with tunable coupling are ideally suited for fast and accurate implementation of quantum logic. Here we present a simple approach, based on Weyl chamber steering, to CNOT gate design for inductively coupled phase qubits with tunable coupling strength g. In the presence of simultaneous rf pulses on the individual qubits that appropriately track the coupling strength as it ...
متن کاملQuantum Process Tomography of a Universal Entangling Gate Implemented with Josephson Phase Qubits
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular implementations of e.g. the controlled-NOT gate 1,2 , but have not fully characterized gate operation for arbitrary superpositions of input states...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 11 شماره
صفحات -
تاریخ انتشار 2012